Topological Dimension and Sums of Connectivity Functions
نویسندگان
چکیده
The main goal of this paper is to show that the inductive dimension of a σ-compact metric space X can be characterized in terms of algebraical sums of connectivity (or Darboux) functions X → R. As an intermediate step we show, using a result of Hayashi [9], that for any dense Gδ set G ∈ R the union of G and some k homeomorphic images of G is universal for k-dimensional separable metric spaces. We will also discuss how our definition works with respect to other classes of Darboux-like functions. In particular, we show that for the class of peripherally continuous functions on an arbitrary separable metric space X our parameter is equal to either indX or indX − 1. Whether the later is at all possible, is an open probem.
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملOn Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کاملSome topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملEccentric Connectivity Index of Some Dendrimer Graphs
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
متن کاملA Note on Atom Bond Connectivity Index
The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G) uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.
متن کامل